

Telecommunication Application
Transaction Processing (TATP)
Benchmark Description

Version 1.0

IBM Software Group
Information Management
http://tatpbenchmark.sourceforge.net

Version 1.0
Last modified on 27 March, 2009

Copyright © Solid Information Technology 2004, 2009. The right to copy and redistribute
this document is granted, provided its entirety is preserved.

TATP Benchmark Description

TATP Benchmark Description

Table of Contents

Introduction.. 1

Execution and Results .. 2

Execution Environment ... 2

Benchmark Run .. 2

Benchmark Results... 3

Database Schema and Population ... 4

Subscriber Table... 4

Access_Info Table .. 5

Special_Facility Table ... 5

Call_Forwarding Table.. 5

Initial Data Population ... 5

Transactions... 6

Transaction mixes... 6

Dealing with transaction errors.. 6

Search key distributions.. 7

Transaction specifications... 7

GET_SUBSCRIBER_DATA.. 7

GET_NEW_DESTINATION .. 7

GET_ACCESS_DATA .. 8

UPDATE_SUBSCRIBER_DATA... 8

UPDATE_LOCATION ... 8

INSERT_CALL_FORWARDING ... 9

DELETE_CALL_FORWARDING .. 9

Key value distribution ... 11

Configuration Guidelines .. 12

Publishing Results... 13

References ... 13

Appendix A: SQL Schema of the TATP benchmark........................ 14

Page iii

 TATP Benchmark Description

Page iv

IBM Software Group TATP Benchmark Description

Introduction

The Telecommunication Application Transaction Processing (TATP) benchmark is designed to
measure the performance of an relational DBMS/OS/Hardware combination in a typical telco
application.

The benchmark generates a flooding load on a database server. This means that the load is
generated up to the maximum throughput point that the server can sustain. The load is
generated by issuing pre-defined transactions run against a specified target database. The
target database schema is made to resemble a typical Home Location Register (HLR) database
in a mobile phone network. The HLR is a database that mobile network operators use to store
information about the subscribers and the services thereof.

The algorithm of what is known as the TATP Benchmark is based on a benchmark description
that was originally published in a Master's Thesis [1]. The benchmark was modeled after a real
test program that was used by a telecom equipment manufacturer to evaluate the applicability
of various relational database systems to service control programming in mobile networks.
Another derivative of the original test is the Network Database Benchmark [2]. The TATP
benchmark described here adheres fully to the specifications of [1] and [2] in terms of the
database schema, transactions, population rules, value distributions, transaction mix and the
test life cycle. The size of the database populations has been increased, and the configuration
parameters have been adjusted to the capabilities of contemporary hardware. TATP has been
also known under the name "TM1". Currently, a TATP implementation is available on
Sourceforge [3].

TATP is based on seven pre-defined transactions that insert, update, delete and query the data
in the database. The benchmark is run for an agreed sampling time (recommended: two hours)
and, during that period, the number of times each transaction is executed follows the probability
assigned to the transactions in the transaction mix (see section Transactions for details).

Before each benchmark run, the benchmark schema tables are populated according to strict
rules for data granularity, distributions and integrity constraints (see section Database Schema
and Population for details). This ensures that each benchmark run begins with a consistent
database population.

The TATP results show Mean Qualified Throughput (MQTh) of the target database system, and
the response time distributions per transaction types for all seven types of transactions.

In the Execution and Results section, the execution principles of the benchmark are explained.
The section Database Schema and Population introduces the database schema for TATP
benchmark and the population policy for the database tables involved. The Transactions
section explains the TATP transactions in detail, including SQL syntax. In using the different
distribution setting cannot be compared.

Configuration Guidelines, instructions for configuring the target database systems are laid out.
The Publishing Results section offers guidance on how to publish results to the general
community.

This Benchmark is provided as is to the database and telecom community for their own uses.
Solid cannot guarantee the accuracy of any reported results, nor does it make any warranty
about the relevance of such results to any specific application.

Page 1

TATP Benchmark Description IBM Software Group

Execution and Results

Execution Environment

The execution environment of the benchmark (see Figure 1) follows a typical client/server
setting. The System Under Test (SUT) is run in a dedicated computer if a standalone server is
tested. In the case of a hot standby configuration, two computers host the active and standby
servers, respectively. The transaction load is generated in one or more client computers. The
results of each benchmark run are stored in the Test Input and Result Database (TIRDB).
Typically, this database is located in a dedicated computer. The following figure (Figure 1)
depicts a typical execution environment for a standalone server and TATP clients distributed in
three computers.

SUT

TATP Main Node
(Main Control / clients) TIRDB

high speed connections

TATP Remote Node
(Remote Control / clients)

TATP Remote Node
(remote control / clients)

Figure 1. Typical execution environment for TATP benchmark.

Benchmark Run

A single TATP run consist of four phases, namely
1. Database creation and population
2. Idle time + ramp-up time
3. Sampling time (actual benchmark test)
4. Result output

These phases are shown in a time line below in Figure 2. The time intervals in the time line give
an idea of a typical TATP run and how it is divided into separate operational intervals..

 Page 2

IBM Software Group TATP Benchmark Description

t0 t5

Database creation
and population Idle Ramp-up Benchmark Output

t1 t2 t3 t4

Figure 2. A TATP run time line.

The benchmark run does not require any user intervention. The software runs from t0 to t5
automatically.

Benchmark Results

The TATP software collects two types of results from the benchmark, namely Mean Qualified
Throughput (MQTh) and transaction response time distributions.

MQTh is the number of successful transactions per time unit. In TATP, we use one second as a
time unit, resulting in MQTh tps.

The response time is measured for each individual transaction and reported by transaction
type. This provides seven (7) distributions measured with a millisecond resolution. The
maximum response time recorded is set to be 10,000 millisecond (10 seconds). Longer
response times are discarded.

The results of the benchmark are stored in a special database called Test Input and Result
Database (TIRDB).

Page 3

TATP Benchmark Description IBM Software Group

Database Schema and Population

Figure 3 shows the Benchmark database schema used in the TATP benchmark.

Figure 3. Telecommunication Application Transaction Processing (TATP) database schema.

Subscriber Table
• s_id is a unique number between 1 and N where N is the number of subscribers (the

population size).Typically, the population sizes start at N=100,000 subscribers, and then N
is multiplied by factors of 2, 5 and 10 and so forth, for each order of magnitude. During the
population, s_id is selected randomly from the set of allowed values.

• sub_nbr is a 15 digit string. It is generated from s_id by transforming s_id to string and
padding it with leading zeros.
For example:
 s_id 123
 sub_nbr "000000000000123"

• bit_X fields are randomly generated values (either 0 or 1).
• hex_X fields are randomly generated numbers between 0 and 15.
• byte2_X fields are randomly generated numbers between 0 and 255.
• msc_location and vlr_location are randomly generated numbers between 1 and (232 – 1).

 Page 4

IBM Software Group TATP Benchmark Description

Access_Info Table
• s_id references s_id in the Subscriber table.
• ai_type is a number between 1 and 4. It is randomly chosen, but there can only be one

record of each ai_type per each subscriber. In other words, if there are four Access_Info
records for a certain subscriber they have values 1, 2, 3 and 4.

• data1 and data2 are randomly generated numbers between 0 and 255.
• data3 is a 3-character string that is filled with random characters created with upper case A-

Z letters.
• data4 is a 5-character string that is filled with random characters created with upper case A-

Z letters.

There are between 1 and 4 Access_Info records per Subscriber record, so that there are 25 %
subscribers with one record, 25% with two records and so on.

Special_Facility Table
• s_id references s_id in the Subscriber table.
• sf_type is a number between 1 and 4. It is randomly chosen, but there can only be one

record of each sf_type per each subscriber. So if there are four Special_Facility records for
a certain subscriber, they have values 1, 2, 3 and 4.

• is_active is either 0 or 1. is_active is chosen to be 1 in 85% of the cases and 0 in 15% of
the cases.

• error_cntrl and data_a are randomly generated numbers between 0 and 255.
• data_b is a 5-character string that is filled with random characters created with upper case

A-Z letters.

There are between 1 and 4 Special_Facility records per row in the Subscriber table, so that
there are 25% subscribers with one record, 25% with two records and so on.

Call_Forwarding Table
• s_id and sf_type reference the corresponding fields in the Special_Facility table.
• start_time is of type integer. It can have value 0, 8 or 16 representing midnight, 8 o'clock or

16 o'clock.
• end_time is of type integer. Its value is start_time + N, where N is a randomly generated

value between 1 and 8.
• numberx is a randomly generated 15 digit string.

There are between zero and 3 Call_Forwarding records per Special_Facility row, so that there
are 25 % Special_Facility records without a Call_Forwarding record, 25% with one record and
so on. Because start_time is part of the primary key, every record must have different
start_time.

Initial Data Population

The database is always freshly populated before each benchmark run. This ensures that runs
are reproducible, and that each run starts with correct data distributions.

The Subscriber table acts as the main table of the benchmark. After generating a subscriber
row, its child records in the other tables are generated and inserted. The number of rows in the
Subscriber table is used to scale the population size of the other tables. For example, a TATP
with population size of 1,000,000 gives the following table cardinalities for the benchmark:

Page 5

TATP Benchmark Description IBM Software Group

Subscriber = 1,000,000 rows
Access_Info ≈ 2,500,000 rows
Special_Facility ≈ 2,500,000 rows
Call_Forwarding ≈ 3,750,000 rows

The population sizes used in typical TATP runs are: 100,000, 200,000, 500,000, 1,000,000,
2,000,000 and 5,000,000 subscribers.

The attribute values are evenly distributed where appropriate. For example, the length of the
time interval in Call_Forwarding is evenly distributed between [1,8] hours.

The initial data is populated using a single client. The benchmark system then waits a preset
time for the target DBMS to finish any possible asynchronous tasks, such as index structure
construction, before proceeding to the benchmark itself.

Transactions

Transaction mixes

The basic TATP benchmark runs a mixture of seven (7) transactions issued by ten (10)
independent clients. All the clients run the same transaction mixture with the same transaction
probabilities as defined below.

Read Transactions (80%):
GET_SUBSCRIBER_DATA 35 %
GET_NEW_DESTINATION 10 %
GET_ACCESS_DATA 35 %

Write Transactions (20%):
UPDATE_SUBSCRIBER_DATA 2 %
UPDATE_LOCATION 14 %
INSERT_CALL_FORWARDING 2 %
DELETE_CALL_FORWARDING 2 %

Dealing with transaction errors

Transactions may not succeed in all cases because random numbers are used to generate
keys, and some of the values randomly chosen will not be present in the benchmark database.
If a transaction fails because of missing data, this is not considered an error. On the other hand,
a transaction returning a predefined acceptable non-fatal error is not included in the Mean
Qualified Throughput nor the collected response time data. If an unexpected statement and
transaction error occurs, the test exits.

The following are acceptable errors from the TATP perspective:

1. A UNIQUE constraint violation error encountered in the INSERT CALL FORWARDING
transaction (an effort to insert a duplicate primary key).

2. A foreign key constraint violation error in the update and insert transactions, when an
effort is made to insert a foreign key value that does no match a corresponding value in
the referenced table.

 Page 6

IBM Software Group TATP Benchmark Description

Search key distributions

To randomly generate search keys, the benchmark program may use either of the two
distributions: a uniform one and a non-uniform one (see the section Search key distributions for
more details). The default one is the non-uniform distribution.

Transaction specifications

GET_SUBSCRIBER_DATA

Retrieve one row from the SUBSCRIBER table.

SELECT s_id, sub_nbr,
 bit_1, bit_2, bit_3, bit_4, bit_5, bit_6, bit_7,
 bit_8, bit_9, bit_10,
 hex_1, hex_2, hex_3, hex_4, hex_5, hex_6, hex_7,
 hex_8, hex_9, hex_10,
 byte2_1, byte2_2, byte2_3, byte2_4, byte2_5,
 byte2_6, byte2_7, byte2_8, byte2_9, byte2_10,
 msc_location, vlr_location
FROM Subscriber
WHERE s_id = <s_id rnd>;

The search key is s_id (primary key). The value range of s_id is [1,P], where P is the size of the
Subscriber table. All the s_id values in the range [1,P] exist in the table.

For each transaction, s_id is randomly selected from [1,P]. The default is the non-uniform key
distribution.

The probability for the transaction to succeed (that is, a row with the random s_id exists) is 100
%.

GET_NEW_DESTINATION

Retrieve the current call forwarding destination.

SELECT cf.numberx
FROM Special_Facility AS sf, Call_Forwarding AS cf
WHERE
 (sf.s_id = <s_id rnd>
 AND sf.sf_type = <sf_type rnd>
 AND sf.is_active = 1)
 AND (cf.s_id = sf.s_id
 AND cf.sf_type = sf.sf_type)
 AND (cf.start_time \<= <start_time rnd>
 AND <end_time rnd> \< cf.end_time);

The value range of s_id is [1,P], where P is the size of the Subscriber table. There are between
one (1) and four (4) records (average 2.5) in the Special_Facility table for each value of s_id in
the Subscriber table. There are between one (1) and three (3) records (average 1.5) in the
Call_Forwarding table for each (s_id, sf_type) pair in the Special_Facility table.

For each transaction
• s_id is randomly selected from [1,P].
• sf_type is randomly selected from [1,4]
• start_time is randomly selected from {0, 8, 16}

Page 7

TATP Benchmark Description IBM Software Group

• end_time is randomly selected from [1,24]

The probability for the transaction to succeed (that is, a row was returned) is 23.9 %

GET_ACCESS_DATA

Retrieve the access validation data.

SELECT data1, data2, data3, data4
FROM Access_Info
WHERE s_id = <s_id rnd>
 AND ai_type = <ai_type rnd>

The value range of s_id is [1,P], where P is the size of the Subscriber table. The value range of
ai_type is [1,4]. There are between one (1) and four (4) rows in the Access_Info table for each
s_id.

For each transaction
• s_id is randomly selected from [1,P].
• ai_type is randomly selected from [1,4]

The probability for the transaction to succeed (that is, a row was returned) is 62.5%.

UPDATE_SUBSCRIBER_DATA

Update the service profile data.

UPDATE Subscriber
SET bit_1 = <bit_rnd>
WHERE s_id = <s_id rnd subid>;

UPDATE Special_Facility
SET data_a = <data_a rnd>
WHERE s_id = <s_id value subid>
 AND sf_type = <sf_type rnd>;

The value range of s_id is [1,P], where P is the size of the Subscriber table. The value range of
sf_type is [1,4]. There are between one (1) and four (4) rows in the Special_Facility table
(average 2.5) for each value of s_id.

For each transaction
• s_id is randomly selected from [1,P].
• sf_type is randomly selected from [1,4]

The probability for the transaction to succeed (that is, both updates succeed) is 62.5%.

Note: in the transaction above, the keyword subid is used as a parameter to carry the value of
the randomly generated s_id from the first update clause to the second.

UPDATE_LOCATION

Change the location.

UPDATE Subscriber
SET vlr_location = <vlr_location rnd>
WHERE sub_nbr = <sub_nbr rndstr>;

 Page 8

IBM Software Group TATP Benchmark Description

The sub_nbr column holds a string representation of the s_id number. Its value range is [1,P],
where P is the size of the Subscriber table.

For each transaction, sub_nbr is randomly selected from its value range.

The probability for the transaction to succeed is 100%.

INSERT_CALL_FORWARDING

Add a new call forwarding info.

SELECT <s_id bind subid s_id>
FROM Subscriber
WHERE sub_nbr = <sub_nbr rndstr>;

SELECT <sf_type bind sfid sf_type>
FROM Special_Facility
WHERE s_id = <s_id value subid>:

INSERT INTO Call_Forwarding
VALUES (<s_id value subid>, <sf_type rnd sf_type>,
 <start_time rnd>, <end_time rnd>, <numberx rndstr>);

The sub_nbr column holds a string representation of the s_id number. Its value range is [1,P],
where P is the size of the Subscriber table. Therefore, the first SELECT statement always
returns exactly one row.

There are between one (1) and four (4) records in the Special_Facility table for each s_id in the
Subscriber table, Each number of records occurs with equal probability, resulting to an average
of 2.5 records for each s_id.

The INSERT is not guaranteed to succeed because primary key conflicts are possible. Instead
of retrieving one of the existing records, the benchmark uses a random sf_type value in the
INSERT command. Even using an actual sf_type from the Special_Facility table (selected from
the result set of the second SELECT) would not guarantee a successful INSERT because the
start_time is generated randomly and is part of the Call_Forwarding table primary key.

For each transaction
• sub_nbr is randomly selected from its value range.
• sf_type is randomly selected from [1,4]
• start_time is randomly selected from {0, 8, 16}
• end_time is randomly selected from [1,24]
• numberx is a string of length 15 characters. A number between [1,P] is randomly

generated, converted to string representation and padded with the character zero.

The probability for a successful transaction (that is, a row was inserted) is 31.25%.

DELETE_CALL_FORWARDING

Remove a call forwarding info.

SELECT <s_id bind subid s_id>
FROM Subscriber
WHERE sub_nbr = <sub_nbr rndstr>;

DELETE FROM Call_Forwarding
WHERE s_id = <s_id value subid>

Page 9

TATP Benchmark Description IBM Software Group

 AND sf_type = <sf_type rnd>
 AND start_time = <start_time rnd>;

The sub_nbr column holds a string representation of the s_id number. Its value range is [1,P],
where P is the size of the Subscriber table. Therefore, the SELECT statement always returns
exactly one row.

There are between one (1) and four (4) records in the Special_Facility table for each s_id in the
Subscriber table. Each number of records occurs with equal probability, resulting to an average
of 2.5 records for each s_id.

There are between zero (0) and three (3) records in the Call_Forwarding table for each sf_type
value in the Special_Facility table. Each number of records occurs with equal probability,
resulting to an average of 1.5 records for each sf_type.

For each transaction
• s_id is randomly selected from [1,P].
• sf_type is randomly selected from [1,4]
• start_time is randomly selected from {0, 8, 16}

The probability for a successful transaction (that is, a row was deleted) is 31.25%.

 Page 10

IBM Software Group TATP Benchmark Description

Key value distribution

For all transaction types, Subscriber ID (s_id) is generated randomly using uniform or non-
uniform value distribution. By default, a non-uniform distribution is used. However, a uniform
distribution can also be chosen.

Non-uniform key distribution simulates real-life access patterns better than uniform distribution.
It can hardly be assumed that all subscribers use a communication network equally. With non-
uniform key distribution TATP benchmark chooses some subscriber IDs more often than
others. The non-uniform distribution is based on the specification in [2].

Non-uniform key distribution allows a database system to better utilize its caching capabilities
so that the performance degradation with larger databases that do not fit in the cache is
smoother than with a uniform one.

Non-uniform subscriber key values (s_id) are generated using the following formula:

NURand(A, x, y) = ((get_random(0, A) | get_random(x, y))) % (y – x + 1)) + x

where

 get_random(x, y) is a uniformly distributed random number generator with the range [x,
y]

 ‘|’ sign represents bitwise OR operation

 ‘%’ sign represents a modulo division operation

 A is a constant that is choosen based on the size of Subscriber table:

Subscriber rows A

1000000 or less 65535

from 1000001 to 10000000 inclusive 1048575

10000001 or more 2097151

An example of distribution produced with NURand function is given below (Figure 4).

Page 11

TATP Benchmark Description IBM Software Group

Figure 4. Example non-uniform key distribution

Since a test run with non-uniform key distribution generates a different access pattern than a
uniform one, results produced using the different distribution setting cannot be compared.

Configuration Guidelines

For the test results to be comparable, the target database products must be configured to be as
similar as possible. The following are database system settings that must be taken into account
(together with the recommended values) when configuring the servers:

Database file disk devices
The number of disk devices used to store the database files. Recommended:1.

Log file disk devices
The number of disk devices used to store the transaction log files. Recommended: 1
(different than the device for the database files).

Size of the shared buffer pool (database cache)
The database cache resides in main memory and maintains database pages that are
read from or written to disk. Recommended: 0.5 GB.

Checkpoint interval
The time (average) between any two consecutive checkpoints whereby all dirty buffer
pages are written to disk. Recommended: 30 min.

Transaction durability level
Some products allow for different log writing modes affecting transaction durability. The
strict (full) durability requires that the transaction is written to the log, synchronously,
before the system acknowledges the transaction's commit. Another way to achieve strict
durability is to write the log, synchronously, over the network to another computer, for
example, in hot standby configuration. On the other hand, relaxed durability allows for
asynchronous log writing (to disk or over network). Recommended: strict.

Transaction isolation level
The isolation level (defined in the SQL standard) dictates how serializable concurrently
executed transactions are. The effect of the isolation level is that the higher the level, the
less concurrency is allowed in the system. Recommended: READ COMMITTED.

Disk write-back cache
Contemporary computer disks apply a volatile on-disk buffer for data that is read or
written to the disk. While this so-called write-back cache is enabled, the disk device

 Page 12

IBM Software Group TATP Benchmark Description

signals that data is written although it may still reside in the volatile cache only. If a power
failure happens, the cache-resident data can get lost, and thus transaction durability may
be compromised1. Recommended: write-back cache disabled.

Publishing Results
Any company can use the TATP Benchmark internally for any purpose at all, with no
restrictions. To enhance the credibility of published results, it is recommended that they either
be audited or generated by an independent third party. Tests used to compare the performance
of different products should be run using identical test-bed configurations. The test environment
must be described in sufficient detail that a database professional could reproduce the results.

Common settings that should be included in the report of any TATP Benchmark include the
following:
• The number, size and speed of the disks. How the database data files, indexes, system

catalogs, and logs are distributed over the disks.
• Total amount of machine memory, amount of memory used for the database cache.
• Number, model and speed of the CPUs.
• Hardware model description.
• Operating system name and version.
• DBMS name and version.
• A summary of configuration parameter values, following the list presented in the previous

section
• A copy of a product's configuration file for each product tested and each identifiable

configuration used.

References
[1] Toni Strandell: "Open Source Database Systems: Systems study, Performance and

Scalability". Master's Thesis, University of Helsinki, Department of Computer Science,
May 2003, 54 p. http://ethesis.helsinki.fi/julkaisut/mat/tieto/pg/strandell/

[2] "Network Database Benchmark", an open-source project, at:
https://hoslab.cs.helsinki.fi/savane/projects/ndbbenchmark/.

[3] "Telecom Application Transaction Processing Benchmark", an open-source project, at:
http://tatpbenchmark.sourceforge.net/.

1 Some high-end devices may utilize a persistent write-back cache, whereby an on-board battery secures
the data in the buffer during a power outage.

Page 13

TATP Benchmark Description IBM Software Group

Appendix A: SQL Schema of the TATP benchmark

CREATE TABLE Subscriber (
 s_id INTEGER NOT NULL PRIMARY KEY,
 sub_nbr VARCHAR(15) NOT NULL UNIQUE,
 bit_1 TINYINT,
 bit_2 TINYINT,
 bit_3 TINYINT,
 bit_4 TINYINT,
 bit_5 TINYINT,
 bit_6 TINYINT,
 bit_7 TINYINT,
 bit_8 TINYINT,
 bit_9 TINYINT,
 bit_10 TINYINT,
 hex_1 TINYINT,
 hex_2 TINYINT,
 hex_3 TINYINT,
 hex_4 TINYINT,
 hex_5 TINYINT,
 hex_6 TINYINT,
 hex_7 TINYINT,
 hex_8 TINYINT,
 hex_9 TINYINT,
 hex_10 TINYINT,
 byte2_1 SMALLINT,
 byte2_2 SMALLINT,
 byte2_3 SMALLINT,
 byte2_4 SMALLINT,
 byte2_5 SMALLINT,
 byte2_6 SMALLINT,
 byte2_7 SMALLINT,
 byte2_8 SMALLINT,
 byte2_9 SMALLINT,
 byte2_10 SMALLINT,
 msc_location INTEGER,
 vlr_location INTEGER);

CREATE TABLE Access_Info (
 s_id INTEGER NOT NULL,
 ai_type TINYINT NOT NULL,
 data1 SMALLINT,
 data2 SMALLINT,
 data3 CHAR(3),
 data4 CHAR(5),
 PRIMARY KEY(s_id, ai_type),
 FOREIGN KEY (s_id) REFERENCES Subscriber (s_id));

CREATE TABLE Special_Facility (
 s_id INTEGER NOT NULL,
 sf_type TINYINT NOT NULL,

 Page 14

IBM Software Group TATP Benchmark Description

 is_active TINYINT NOT NULL,
 error_cntrl SMALLINT,
 data_a SMALLINT,
 data_b CHAR(5),
 PRIMARY KEY (s_id, sf_type),
 FOREIGN KEY (s_id) REFERENCES Subscriber (s_id));

CREATE TABLE Call_Forwarding (
 s_id INTEGER NOT NULL,
 sf_type TINYINT NOT NULL,
 start_time TINYINT NOT NULL,
 end_time TINYINT,
 numberx VARCHAR(15),
 PRIMARY KEY (s_id, sf_type, start_time),
 FOREIGN KEY (s_id, sf_type)
 REFERENCES Special_Facility(s_id, sf_type));

Page 15

	Introduction
	 Execution and Results
	Execution Environment
	Benchmark Run
	Benchmark Results

	 Database Schema and Population
	Subscriber Table
	Access_Info Table
	Special_Facility Table
	Call_Forwarding Table
	Initial Data Population

	Transactions
	Transaction mixes
	Dealing with transaction errors
	Search key distributions
	Transaction specifications
	GET_SUBSCRIBER_DATA
	GET_NEW_DESTINATION
	GET_ACCESS_DATA
	UPDATE_SUBSCRIBER_DATA
	UPDATE_LOCATION
	INSERT_CALL_FORWARDING
	DELETE_CALL_FORWARDING

	 Key value distribution
	Configuration Guidelines
	Publishing Results
	References
	 Appendix A: SQL Schema of the TATP benchmark

